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Abstract

In order to understand matrix dominated behavior in laminated polymer matrix composites,

an elastic/viscoplastic constitutive model was developed and used to predict stress/strain

behavior of both off-axis and angle-ply symmetric laminates under in-plane, tensile axial

loading.

The model was validated for short duration tests on graphite reinforced thermoplastic

and bismaleimide composites at elevated temperatures. Short term stress relaxation and

short term creep, strain rate sensitivity, and material nonlinearity were accurately accounted

for. The testing times were extended to longer durations and periods of creep and stress

relaxation were used to investigate the ability of the model to account for long term behavior.

The model generally underestimated the total change in strain and stress for both long term

creep and long term relaxation respectively.

Key Words
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Nomenclature

a66 - potential function material parameter

E - elastic Young's modulus
G - elastic shear modulus

H - overstress

K - elastic/viscoplastic material parameter

m - elastic/viscoplastic material parameter

n - quasistatic elastic/plastic material parameter

S - compliance matrix

Tg - glass transition temperature
- strain

- strain rate

7 - viscosity constant
v - Poisson's ratio

a - stress

& - stress rate

- effective stress

- effective stress rate

a* - quasistatic stress

_* - effective quasistatic stress

- function defined in equation 11

Subscripts

1,2 = lamina material principal directions

Superscripts
e- elastic

qp - quasistatic plastic

vp- viscoplastic
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Introduction

In the aerospace community, most laminated composite structures are designed for fiber

dominated load paths. Despite this design criterion, a need exists for a fundamental un-

derstanding of the stress/strain relationships of laminates which are loaded along matrix

dominated directions. This need arises from three possible sources. The first is the desire

for analytical methods to perform local stress analyses of structural components (eg. discon-

tinuities, stress concentrations, mechanically fastened joints, failure zones) which may lack

fibers along the primary load path. Since most failure modes in composites are influenced by

the state of stress in the matrix and fiber/matrix interface, accurate analytical methods are

essential. The second need is for test methods to screen composites for matrix dominated

behavior in order to assess the tendency towards material nonlinearity and rate dependent

behavior. The third need arises from the requirement for designing composite structures

with long operating lifetimes and developing associated accelerated test methods to verify

the design. All of these needs may be critical for an aircraft such as a supersonic commercial

transport due to the fact that the long term durability of composite materials, particularly at

elevated temperatures, is directly dependent upon the stability and load carrying capability
of the matrix.

As part of a research program at NASA to investigate long term durability issues in com-

posites, test data on two model material systems, under conditions imposed by a Mach 2+

supersonic transport, were generated. Previous papers by the author [1], [2] have presented

experimental methods for determining material constants and analytical models for advanced

composites demonstrating elastic/viscoplastic behavior. The current research investigates

the isothermal, matrix dominated, rate-dependent behavior of IM7/5260 a and IM7/83201

(graphite fiber reinforced thermoplastic and bismaleimide) composites under tension loading

and verifies the predictive capabilities presented in [2] for short term behavior.

Long term exposure to load and temperature may need to be accounted for to accu-

rately predict the effects on the time independent and time dependent mechanical behav-

ior of matrix dominated polymer matrix composites. Recently, Gramoll et.al. [3] used

time-temperature superposition principles to characterize the nonlinear thermoviscoelastic

response on kevlar/epoxy laminates. In studies by Sullivan [4] and Hastie and Morris [5],

physical aging of the polymer in the composite was found to change the laminate's viscoelas-

tic properties. In these studies, Sullivan characterized physical aging in a glass reinforced

thermoset composite while Hastie and Morris investigated the effect of physical aging on the

1The use of trade names in this paper does not constitute endorsement, either expressed or implied, by
the National Aeronautics and Space Administration.
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creepresponseof a carbonreinforcedthermoplastic composite.Both of theseinvestigations
werelimited to the linear viscoelasticrangeand developedshift factors to modify the elastic
compliancematrix. They concludedthat physical aging effectsmay occur in their study
materialsand that this agingmay effect long term mechanicalbehavior.

Unlike thesepreviousstudies,the current researchutilizes a elastic/viscoplasticanalysis
model capableof predicting nonlinear, short term time-dependentbehavior at stresslevels
near tensileultimate. The ability to extendedthe model to accountfor long term behavior
will be discussed.

Constitutive Model Description

The elastic/viscoplastic model was developed [2] to approximate many of the experimentally

observed phenomena in matrix dominated laminates over a range of typical operating tem-

peratures. The model is considered to be macromechanical and phenomenological in form

and was developed to account for variable strain rate loading and short term creep and stress

relaxation. Other rate-dependent behavior such as strain recovery and aging were not ac-

counted for explicitly in the model. Material constants were found from lamina level tests of

unidirectional material. Temperature effects were handled through the variation of material

properties with temperature [6]. An undamaged state was assumed for the laminate. Ex-

tensions to account for load and temperature induced damage would require incorporation

of analysis schemes such as given by Martin [7].

For in-plane tension loading and assuming plane stress conditions, the total strain rate

was assumed to be composed of elastic and viscoplastic components as follows

= + (1)

The individual constitutive relations were given as

{_} = [S]'{b} elastic (2)

and

{_P} = [S]_{b} viscoplastic (3)

The elastic compliance term is linear and independent of stress level and was written as

[S] _: _E, _ 0 (4)
0 0 1
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where the terms Ea, E2, Gx2, and vm are constants "referenced to the material principal axis.

The viscoplastic compliance matrix was found [2] to be a nonlinear function of stress

and was partially derived using the overstress concept, which has been investigated by other

authors [8], [9], [10] for a variety of material systems. It was assumed that the viscoplastic

compliance matrix can be decomposed into two separate components given by

[s]_ = [s]_' + [s]_" (5)

The first part of the viscoplastic compliance matrix was found to be

3 [ 00 0°[ _r22 (6)

and the second term ([S] '°''') in the viscoplastic compliance matrix ([S] "v) was found to be

[s]_" - _(_ - 3)_
3_

0 0 0

0 eh 0
a22

2 3
0 0

dq2

+ [s]q, (7)

where H is the scalar overstress given by

H=(o-o*) (8)

the term a* is the rate-independent quasistatic stress, K and m are material constants found

from tests [1], 7 is a constant with magnitude of unity and units of 1__ and the term • was

given as

= 9nA_("-3) (9)

The effective stress (_) is

_" = _(a22 + 2ae_) (10)

and _ is the effective stress rate. The terms a22 and ax2 ave the inplane transverse and shear

stress components, respectively. The material parameter a66 was found from axial tests of

off-axis specimens.

The theoretical lower hound of the rate dependent behavior was represented by a rate-

independent (quasistatic) elastic/plastic constitutive relation developed by Sun and Chen

[11] where

{dd p} = [S]qV{da *} quasistatic plastic (11)
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The quasistatic plastic compliance matrix was written as

0 0 0 ]
[S] q_ = • 0 ah 0

2 2
0 0 4a66a12

(12)

and all of the stress terms in equation 12 are quasistatic (a*) and A and n are material

constants found from test [1].

For an orthotropic plate, these equations reduce to a first order nonlinear differential

equation [2] which was solved using a Runge-Kutta fourth order numerical integration tech-

nique. The equations can be solved using either stress or strain rates as input. Analysis of a

laminated plate required incorporating the constitutive relations into a form of lamination

theory [6] which was numerically solved directly by updating the compliance matrices using

the previous stress state.

Materials Testing

Two polymer matrix composite material systems were investigated in this study. The first,

an amorphous graphite/thermoplastic, was composed of Hercules IM7 fiber and Amoco 8320

matrix. The second material under study was a graphite/bismaleimide composed of Hercules

IM7 fibers and Narmco 5260 matrix. The glass transition temperatures (Tg) were measured

to be 219°C and 257°C for the IM7/8320 and IM7/5260, respectively.

Material properties required by the model were found from isothermal, axial tension

tests of off-axis specimens [1]. Specimens used for verification of the model were both off-

axis and angle-ply laminates. A rectangular test specimen geometry similar to that de-

scribed in ASTM specification D3039-76 was used. These specimens consisted of twelve

plys and measured 2.54 cm. by 24.1 cm. The six temperatures selected for study were

23 °, 70 °, 125 ° , 150 °, 175 ° and 200°C.

Using procedures described in [1], the elastic constants (El, v12, E2 and Gx2), the three

elastic/plastic (a66, A, n) and two elastic/viscoplastic (K, m) material parameters, were mea-

sured and correlated against test temperature [6]. In [6] a strong temperature dependency

was found for the parameters A and K. All of the material constants and parameters used

in this study are given in table 1. The elastic constants were based upon an average value

found from two to three replicates for each temperature. The remaining five parameters

were found from master curves for each material at each test temperature. Two to three

specimens were used to form each master curve.

t
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All tests, with the exception of the long term creep, were performed on a servo-hydraulic

test machine capable of running predetermined load or strain history profiles. For the tests

on the hydraulic test stand, heat was applied to the test specimens via an aluminum fixture

which utilized resistance heaters and provided contact of the heated section over the un-

gripped section of the specimen. The long term creep tests were performed on mechanical,

cantilever arm creep frames with circulating air ovens.

For all tests, strain was measured by using extensometers or high temperature foil strain

gages [1]. Load, as measured by load cells, was converted to stress using the average cross-

sectional area of the specimen prior to testing.

Results and Discussion

In order to verify the analytical model, recent test data was compared to predicted behavior

for off-axis and angle-ply laminates. Creep, stress relaxation, material nonlinearity and the

effects of strain rate were explored experimentally and analytically. The observed differences

between short term and long term exposure at temperature will be discussed.

The test data and the predictions, presented in figures 1-8, were all conducted under

isothermal conditions using axial tensile loading. Off-axis specimens with fiber orientations

of 15 °, 25 °, 30 °, 40 ° and angle ply layups of [=1=4512,and [:k3012s were tested at temperatures

ranging form 23°C to 200°C. The results shown in figures 1-8 represent typical data and

predictions for these types of tests.

Effects of Extended Hold Times

The effects of short and extended hold times were explored using off-axis tests. Figures

la and lb show test and predicted values for off-axis specimens which have been tested by

loading under strain control to a predetermined level, unloading under load control to zero

load, holding under load control, and reloading under strain control. Two hold periods, 6

seconds and 600 seconds, were utilized. The objective of this type of test was to examine

the stress/strain behavior after the hold at zero load. Both tests and predictions show little

difference between the tests with different hold times, with the same stress/strain path being

followed by both the long and short hold cases. For both cases, the model describes both

loading and unloading segments with reasonable accuracy.

Test and predicted short and long term stress relaxation results are shown in figures 2a

and 2b. The plot of normalized stress versus time (figure 2a) shows less than 1 percent

difference between test and prediction for the short term test. Extending the time for the
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sametest (figure 2b) showsa tendencyfor both test and prediction to approacha limiting
value of stress. However,the long term test has a differenceof approximately 12 percent
betweentest and prediction alter 20 minutes of test time.

Test data and predicted behavior of short and long term creep are shown in figures 3a

and 3b. As in the stress relaxation case above, good correlation (approximately 4 percent

difference) between test and prediction values are found for the short term test while a

comparison to the extended time data shows a percent difference approaching 15 percent

after 200 minutes of test time.

For these extended time tests, two major sources of error may be present. The first source

is due to the fact that the material property tests [1] were conducted on a time scale on the

order of minutes. The implication is that to accurately predict the long term response, some

long term test data may be needed to develop the material parameters required by the model.

One potential problem with conducting such long term tests would be that since stress

relaxation was used to develop the parameters, accurate long term stress relaxation tests

would be required. These tests may be difficult to perform due to the likelihood of electrical

and/or mechanical drifting of the strain controller during stress relaxation. Electrical drift

may be caused by noise or environmental fluctuations, while mechanical drift is caused by

test machine vibration and compliance of the load train. Long term creep tests, which are

easier to perform, may be required to generate the long term data.

The second major source of error for an extended time test is the aging which may occur

in the polymer matrix. As shown by Struik [12] aging, which may be chemical (irreversible),

physical (reversible), or a combination of both, will change the compliance of the polymer

over time. This change will be directly affected by the temperature history. Changes in

properties due to aging will be material system dependent. Additional environmental factors,

such as moisture, and oxygen, may also influence the rate of aging. Accounting for aging in

the viscoplastic model will require an understanding of how aging influences the compliance

matrices given in equations 4, 6, and 7.

Material Nonlinearity and Strain Rate Effects

Angle-ply laminates ([+0],) loaded under axial tension were used to explore material non-

linearity and strain rate effects. During the course of the test program, it was observed

that some of the laminates exhibited matrix cracking. This cracking, which will alter the

stress distribution in a laminate [13], can change the apparent stress/strain behavior. The

laminates tested under this program were inspected for matrix cracks using microscopic ex-

aminations of the edges, and approximate threshold stress and temperature levels for crack

initiation were established. All of the test results presented herein are for laminates which
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did not exhibit any matrix cracks.
The severityof the nonlinearity in the testedlaminateswasgovernedby the angle0 and

test temperature. Figures 4a and 4b show test versus predicted stress/strain behavior for

the highly matrix dominated angle-ply laminates [-1-4512s and [+30]2, respectively. These

laminates were tested using a constant strain rate of 200g_/sec. The model gave a good

correlation for both type of laminates. The duration of these tests was short enough that

aging effects during the test would not be significant. The expected effect of prior aging on

such test results would be an increase in stiffness when compared to unaged specimens [12].

Using material properties from table 1 as input, figure 5 shows the capability of the

numerical simulation to predict stress/strain behavior of angle-ply laminates for a variety of

layups. Material nonlinearity is apparent for all layups except the laminate with 0 ° plys.

For exploring rate effects in strain controlled tests, strain rates were selected which were

felt to be typical for aircraft structures and within the range of the test machine's capabilities.

The effects of variable strain rates on the response of angle-ply laminates [-4-4512s and [+3012_

are shown in figures 6a, 6b and 7a, 7b. Each figure depicts two tests, a constant rate

(2001_e/sec.) test and a jump rate (lOl_e/sec. to 200_e/sec.) test. Both test and predicted

values are given for comparison. In general, the model appears to give a good prediction

of the effect of jumps in strain rates. The jump from 10 to 200#e/sec. coincides with the

constant 200_e/sec. rate test. This behavior is unlike some high temperature metallics which

may exhibit dependence of stress level on strain rate history [14].

Using a numerical simulation, the predicted effect of varying applied strain rate is shown

in figure 8. Each curve represents a prediction of laminate stress/strain behavior at a constant

strain rate. Assuming that for a given strain level, predicting stresses higher than the

test values gives a conservative estimate of peak stress, the use of the rate independent

(quasistatic) expression may lead to unconservative estimates of the stress/strain response.

Summary

In order to address the need for an understanding of matrix dominated behavior in polymer

matrix composites at elevated temperatures, an analytical model and associated test methods

were previously developed. Using isothermal, short term stress relaxation testing, material

parameters were developed for the model. The model, based upon elastic/viscoplastic consti-

tutive relations was used to predict behavior of both off-axis and angle-ply laminates under

in-plane tensile loading.

The model was validated for short duration tests at elevated temperatures. The model

accounts for material nonlinearity, strain rate sensitivity, short term stress relaxation and
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short term creep. The testing times were extended for longer durations and periods of
creepand stressrelaxation wereusedto investigatethe ability of the model to accountfor
long term behavior. The effectsof extendedholdsat zero load werenegligible. The model
generallyunderestimatedby approximately 10 to 15 percent the total changein strain or
stressfor both long term creepand relaxation, respectively. In order for the presentmodel
to accountfor long term behavior,material parameter tests needto be extendedto longer
durations, and the analytical and test methods needto account for aging of the polymer
matrix material.
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Material
Type

IM7/5260
Tension

IM7/8320
Tension

°C
23
70
125
150
175
200
23
70
125
150
175
200

Elastic
EI(GPa) I E_(GPa) I GI_(GPa) ]

152.8

161.7

8.7 5.2

9.2 5.7

156.5 8.8 5.3

165.3 8.8 5.1

136.4 7.7 5.1

154.3 7.5 5.1

157.9 7.1 4.3

153.8 7.9 4.3

142.0 7.5 4.7

152.9 7.3 4.4

153.9 3.47.2

5.5147.3 2.6

//12 a66

Elastic/Plastic -Elastic/Viscoplastic

I A(MPa) -" ] n K(MPa)

2.91E-14 5.33 2.27E+05

1.12E-13 5.33 1.51E+05
.. . ,

8.29E-13 5.33 1.40E+05

1.91E-12 5.33 1.19E+05

1.15E-11 5.33 1.12E+05

6.31E-11 5.33 1.03E+05

1.94E-10 4.66 9.22E+03

1.82E-10 4.66 2.10E+04

6.25E-10 4.66 8.69E+03

6.28E-10 4.66 7.43E+03

3.92E-09 4.66 2.51E+04

1.52E-06 4.66 6.78E+03

0.30 0.60

0.31 0.60

0.36 0.60

0.35 0.60

0.30 0.60

O.35 0.60

0.32 0.30

0.34 0.30

0.35 0.30

0.33 0.30

0.32 0.30

0.35 0.30

m

0.95

0.95

0.95

0.95

0.95

0.95

0.81

0.81

0.81

0.81

0.81

0.81

Table 1: Material properties and constants. [6]
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Figurela. Test data for loading, unloading, recovery, loading sequence.
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Figurelb. Prediction of loading, unloading, recovery, loading

sequence.
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Figure 2a. Test data and prediction of short term stress relaxation.
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Figure 2b. Test data and prediction of long term stress relaxation.
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Axial
Strain
(mm/mm)

0.008

0.007

0.006

0.005

0.004
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0.002

0.001

0

IM7/5260 [40]
125°C 12

0 200 400

O'(M

40

20
Test

.005

0
o o

o Test

m Predicted

600 800

Time (sec)

I

I000

E

Figure 3a. Test data and prediction of short term creep.

1200

(20 mins)

0.008

0.007

Axial o.oo6

Strain o.oo5
(mm/mm)

0.004

0.003

0.002

0.001

0
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o Test

--- Predicted

I I , , I I • , }--,

0 2000 4000 6000 8000 10000

Time (sec)

Figure 3b. Test data and prediction of long term creep.
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Axial
Stress
(MPa)

120

100 I IM7/5260 [+45]_

1 . 1250O zs . __._._._oo_80 _-

40

:1 _ o Test

2oy ,,,_, predicle d
0 , ,-, ,_, , , , I-,,,, i .... I, , ,-,-_, ,-,-_, .... I

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Axial Strain (mm/mm)

Figure 4a. Test versus prediction for an angle-ply laminate.
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400

350
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Stress
(MPa) 2so

2OO
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100

50

0

T IM7/5260 [+30].. oO

1- 70oc zs oooOO°°

I -

_- ..e_ _ o Test

.... .... ....--Predicte____+ +.-._._ ,,,,_+_,, .... ,,d,,_

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Axial Strain (mm/mm)

Figure 4b. Test versus prediction for an angle-ply laminate.
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IM7/5260 [02/+45] [+_20/+45] ^
300 _- 150°0 / -_ - zs

z,o_ _=2oop_s /
Axial ] [+30/+45] 2s
Stress 20o

(MPa) 15o

/[+60/+45] 2s
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0-_ , ,, , _ .... _ .... I ,, t • , , ,, , , , t

0.00o 0.00_ 0.002 0.oo3 o.0o4 0.00s 0.oo6 0.007 0.008

Axial Strain (mm/mm)

Figure 5. Predicted behavior of angle-ply laminates.
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120

100
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(MPa) 8o
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60140
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Figure 6a. Test data for constant rate and jump rate loading.
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